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Abstract 22 

A new mathematical framework is presented for producing maps and large-scale 23 

averages of temperature changes from weather station data for the purposes of climate analysis.  24 

This allows one to include short and discontinuous temperature records, so that nearly all 25 

temperature data can be used.  The framework contains a weighting process that assesses the 26 

quality and consistency of a spatial network of temperature stations as an integral part of the 27 

averaging process.  This permits data with varying levels of quality to be used without 28 

compromising the accuracy of the resulting reconstructions.  Lastly, the process presented here is 29 

extensible to spatial networks of arbitrary density (or locally varying density) while maintaining 30 

the expected spatial relationships.  In this paper, this framework is applied to the Global 31 

Historical Climatology Network land temperature dataset to present a new global land 32 

temperature reconstruction from 1800 to present with error uncertainties that include many key 33 

effects.  In so doing, we find that the global land mean temperature has increased by 0.911 ± 34 

0.042 C since the 1950s (95% confidence for statistical and spatial uncertainties).  This change is 35 

consistent with global land-surface warming results previously reported, but with reduced 36 

uncertainty. 37 

  38 
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1. Introduction 39 

While there are many indicators of climate change, the long-term evolution of global 40 

surface temperatures is perhaps the metric that is both the easiest to understand and most closely 41 

linked to the quantitative predictions of climate models.  It is also backed by the largest 42 

collection of raw data.  According to the summary provided by the Intergovernmental Panel on 43 

Climate Change (IPCC), the mean global surface temperature (both land and oceans) has 44 

increased 0.64 ± 0.13 C from 1956 to 2005 at 95% confidence (Trenberth et al. 2007). 45 

During the latter half of the twentieth century weather monitoring instruments of good 46 

quality were widely deployed, yet the quoted uncertainty on global temperature change during 47 

this time period is still ± 20%.  Reducing this uncertainty is a major goal of this paper.  Longer 48 

records may provide more precise indicators of change; however, according to the IPCC, 49 

temperature increases prior to 1950 were caused by a combination of anthropogenic factors and 50 

natural factors (e.g. changes in solar activity), and it is only since about 1950 that man-made 51 

emissions have come to dominate over natural factors.  Hence constraining the post-1950 period 52 

is of particular importance in understanding the impact of greenhouse gases.  53 

The Berkeley Earth Surface Temperature project was created to help refine our estimates 54 

of the rate of recent global warming.  This is being approached through several parallel efforts to 55 

A) increase the size of the data set used to study global climate change, B) bring additional 56 

statistical techniques to bear on the problem that will help reduce the uncertainty in the resulting 57 

averages, and C) produce new analysis of systematic effects, including data selection bias, urban 58 

heat island effects, and the limitations of poor station siting.  The current paper focuses on 59 

refinements in the averaging process itself and does not introduce any new data.  The analysis 60 

framework described here includes a number of features to identify and handle unreliable data; 61 
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however, discussion of specific biases such as those associated with station siting and/or urban 62 

heat islands will also be published separately.  63 

2. Averaging Methods of Prior Studies 64 

Presently there are three major research groups that routinely produce a global average 65 

time series of instrumental temperatures for the purposes of studying climate change.  These 66 

groups are located at the National Aeronautics and Space Administration Goddard Institute for 67 

Space Studies (NASA GISS), the National Oceanic and Atmospheric Administration (NOAA), 68 

and a collaboration of the Hadley Centre of the UK Meteorological Office with the Climate 69 

Research Unit of East Anglia (HadCRU).  They have developed their analysis frameworks over a 70 

period of about 25 years and share many common features (Hansen and Lebedeff 1987; Hansen 71 

et al. 1999; Hansen et al. 2010; Jones et al. 1986; Jones and Moberg 2003; Brohan et al. 2006; 72 

Smith and Reynolds 2005; Smith et al. 2008).  The global average time series for the three 73 

groups are presented in Figure 1 and their relative similarities are immediately apparent.  Each 74 

group combines measurements from fixed-position weather stations on land with transient ships / 75 

buoys in water to reconstruct changes in the global average temperature during the instrumental 76 

era, roughly 1850 to present.  Two of the three groups (GISS and HadCRU) treat the land-based 77 

and ocean problems as essentially independent reconstructions with global results only formed 78 

after constructing separate land and ocean time series.  The present paper will present 79 

improvements and innovations for the processing of the land-based measurements.  Though 80 

much of the work presented can be modified for use in an ocean context, we will not discuss that 81 

application at this time due to the added complexities and systematics involved in monitoring 82 

from mobile ships / buoys. 83 

 84 
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Figure 1. Comparison of the global annual averages and annual average uncertainty   85 

 86 

 87 

In broad terms each land-based temperature analysis can be broken down into several 88 

overlapping pieces: A) the compilation of a basic dataset, B) the application of a quality control 89 

and “correction” framework to deal with erroneous, biased, and questionable data, and C) a 90 

process by which the resulting data is mapped and averaged to produce useful climate indices.  91 

The existing research groups use different but heavily overlapping data sets consisting of 92 

between 4400 and 7500 weather monitoring stations (Brohan et al. 2006, Hansen et al. 2010; 93 

Peterson and Vose 1997).  Our ongoing work to build a climate database suggests that over 94 

40000 weather station records have been digitized.  All three temperature analysis groups derive 95 

a global average time series starting from monthly average temperatures, though daily data and 96 
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records of maximum and minimum temperatures (as well as other variables such as 97 

precipitation) are of increasing used in other forms of climate analysis (Easterling et al. 1997, 98 

Klein and Können 2003, Alexander et al. 2006, Zhang et al. 2007).  The selection of stations to 99 

include in climate analyses has been heavily influenced by algorithms that require the use of 100 

long, nearly-continuous records.  Secondarily, the algorithms often require that all or most of a 101 

reference “baseline” period be represented from which a station’s “normal” temperature is 102 

defined.   Each group differs in how it approaches these problems and the degree of flexibility 103 

they have in their execution, but these requirements have served to exclude many temperature 104 

records shorter than 15 years from existing analyses (only 5% of NOAA records are shorter than 105 

15 years). 106 

The focus on methods that require long records may arise in part from the way previous 107 

authors have thought about the climate.  The World Meteorological Organization (WMO) gives 108 

an operational definition of climate as the average weather over a period of 30 years (Arguez and 109 

Vose 2011).  From this perspective, it is trivially true that individual weather stations must have 110 

very long records in order to perceive multi-decadal climate changes from a single site.  111 

However, as we will show, the focus on long record lengths is unnecessary when one can 112 

compare many station records with overlapping spatial and temporal coverage.  113 

Additionally, though the focus of existing work has been on long records, it is unclear 114 

that such records are ultimately more accurate for any given time interval than are shorter 115 

records covering the same interval.  The consistency of long records is affected by changes in 116 

instrumentation, station location, measurement procedures, local vegetation and many other 117 

factors that can introduce artificial biases in a temperature record (Folland et al. 2001, Peterson 118 

and Vose 1997, Brohan et al. 2006, Menne et al. 2009, Hansen et al. 2001).  A previous analysis 119 
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of the 1218 stations in US Historical Climatology Network found that on average each record 120 

has one spurious shift in mean level greater than about 0.5 C for every 15-20 years of record 121 

(Menne et al. 2009).  Existing detection algorithms are inefficient for biases less than 0.5 C, 122 

suggesting that the typical length of record reliability is likely to be even shorter.  All three 123 

groups have developed procedures to detect and “correct” for such biases by introducing 124 

adjustments to individual time series.  Though procedures vary, the goal is generally to detect 125 

spurious changes in a record and use neighboring series to derive an appropriate adjustment. This 126 

process is generally known as “homogenization”, and has the effect of making the temperature 127 

network more spatially homogeneous but at the expense that neighboring series are no longer 128 

independent.  For all of the existing groups, this process of bias adjustment is a separate step 129 

conducted prior to constructing a global average.   130 

After homogenization (and other quality control steps), the existing groups place each 131 

“corrected” time series in its spatial context and construct a global average.  The simplest 132 

process, conducted by HadCRU, divides the Earth into 5° x 5° latitude-longitude grid cells and 133 

associates the data from each station time series with a single cell.  Because the size of the cells 134 

varies with latitude, the number of records per cell and weight per record is affected by this 135 

gridding process in a way that has nothing to do with the nature of the underlying climate.  In 136 

contrast, GISS uses an 8000-element equal-area grid, and associates each station time series with 137 

multiple grid cells by defining the grid cell average as a distance-weighted function of 138 

temperatures at many nearby station locations.  This captures some of the spatial structure and is 139 

resistant to many of the gridding artifacts that can affect HadCRU.  Lastly, NOAA has the most 140 

sophisticated treatment of spatial structure.  NOAA’s process, in part, decomposes an estimated 141 

spatial covariance matrix into a collection of empirical modes of spatial variability on a 5° x 5° 142 
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grid.  These modes are then used to map station data onto the grid according to the degree of 143 

covariance expected between the weather at a station location and the weather at a grid cell 144 

center.  (For additional details, and explanation of how low-frequency and high-frequency modes 145 

are handled differently, see Smith and Reynolds 2005).  In principle, NOAA’s method should be 146 

the best at capturing and exploiting spatial patterns of weather variability.  However, their 147 

process relies on defining spatial modes during a relatively short modern reference period (1982-148 

1991 for land records, Smith and Reynolds 2005), and they must assume that the patterns of 149 

spatial variation observed during that interval are adequately representative of the entire history.  150 

Further, if the goal is to understand climate change then the assumption that spatial patterns of 151 

weather variability are time-invariant is potentially confounding. 152 

In all three of these prior approaches, every record used in gridded averaging is assumed 153 

to be equally reliable.  More precisely, they make the assumption that their quality control and 154 

homogenization processes address erroneous and biased data prior to the gridding and averaging 155 

step in such a way that each resulting time series is deserving of equal weight.  (GISS makes a 156 

partial exception in that a corrective model for urban heat island biases is applied after gridding.)  157 

This has the effect that records subject to many bias “corrections” can be given the same weight 158 

in an average as a record where no bias adjustments were found to be necessary.  In such cases, 159 

the differences in data quality may play a role in how the uncertainty is assessed, but not in the 160 

construction of the global average. 161 

All three of the averaging processes currently being used rely on the concept of a 162 

“baseline” parameter to define the “normal” weather.  The baseline can either be introduced for 163 

each record before gridding (e.g. HadCRU) or it can be introduced after gridding and defined at 164 

the level of the grid cell average (e.g. NASA).  The intent of the baseline temperature parameter 165 
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is to capture the “normal” climate at that location by reference to the average weather over some 166 

specific reference period (e.g. 1960-1980).  Each time series is then replaced by an “anomaly” 167 

time series consisting of the differences from the baseline.  This approach is motivated by the 168 

observation that temperatures change rapidly with latitude (about 1 C per 150 km poleward) and 169 

altitude (about 1 C for every 220 m of surface elevation), and that these changes are quite large 170 

compared to the approximately 1 C / century of global warming that one wants to investigate.  In 171 

effect, the baseline parameters are meant to capture most of the spatial variability between sites.  172 

In particular, the average of anomaly series should be much less sensitive to biases due to the 173 

start and stop of individual records.  Without some adjustment for such spatial variability, an 174 

excess of high (or low) latitude stations could erroneously pull the corresponding global average 175 

to lower (or higher) values.   176 

The use of an individual baseline parameter per station (or grid cell) makes no 177 

assumptions about the underlying spatial structure.  This means the maximum spatial 178 

information can in principle be removed from each record; however, several trade-offs are 179 

incurred in doing so.  First, the use of predefined reference intervals will limit the usability of 180 

stations that were not active during the corresponding period (though other compensating 181 

approaches are often used).  Secondly, by defining all stations to have zero anomaly during the 182 

reference period, one may suppress true structure in the temperature field at that time.  183 

Specifically, reconstructions using this method will have lower spatial variability during the 184 

reference interval than at other times due to the artificial constraint that all regions have the same 185 

mean value during the reference period. 186 

Lastly, after gridding the data and creating anomaly series, each existing group creates a 187 

large-scale average using an area-weighted average of non-empty grid cells.  HadCRU and GISS 188 
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add an additional nuance, as they apply a post-stratification procedure prior to their final average.  189 

Specifically, they create averages of specific latitude bands (or hemispheres in HadCRU’s case), 190 

and then combine those average to create the final global average.  This has the effect that each 191 

missing cell in a latitude band is essentially replaced by the average of the valid cells in the band 192 

before constructing the ultimate global average.  To a degree this approach also compensates for 193 

the fact that certain areas (e.g. the Northern Hemisphere) tend to have much greater historical 194 

coverage than others.  Monte Carlo tests we conducted generally confirm that latitudinal banding 195 

improves the accuracy of the overall average given the techniques employed by HadCRU and 196 

GISS; however, we observe that such approaches are largely an indirect means of incorporating 197 

information about the spatial structure of the temperature field that could be modeled more 198 

directly. 199 

3. New Averaging Model 200 

The global average temperature is a simple descriptive statistic that aims to characterize 201 

the Earth.  Operationally, the global average may be defined as the integral average of the 202 

temperatures over the surface of the Earth as would be measured by an ideal weather station 203 

sampling the air at every location.  As the true Earth has neither ideal temperature stations nor 204 

infinitely dense spatial coverage, we can never capture the ideal global average temperature 205 

completely; however, we can use the data we do have to constrain its value.  206 

As described in the preceding section, the existing global temperature analysis groups use 207 

a variety of well-motivated algorithms to generate a history of global temperature change.  208 

However, none of their approaches would generally correspond to a statistical model in the more 209 

formal sense.   210 
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Let 𝑇 𝑥, 𝑡  be the global temperature field in space and time.  We define the 211 

decomposition: 212 

  𝑇 𝑥, 𝑡 = 𝜃 𝑡 + 𝐶 𝑥 +𝑊 𝑥, 𝑡  [1]	
  

Uniqueness can be guaranteed by applying the constraints: 213 

 

𝐶 𝑥 𝑑𝑥!"#$!!!  !"#$%&' = 0, 

 𝑊 𝑥, 𝑡 𝑑𝑥!"#$!!!  !"#$%&' = 0, for all 𝑡, 

 𝑊 𝑥, 𝑡 𝑑𝑡!"#$!!!  !"#$%&' = 0, for all locations 𝑥 

[2]	
  

 Given this decomposition, we see that 𝜃 𝑡  corresponds to the global mean temperature 214 

as a function of time.  𝐶 𝑥  captures the time-invariant spatial structure of the temperature field, 215 

and hence can be seen as a form of spatial “climatology”, though it differs from the normal 216 

definition of a climatology by a simple additive factor corresponding to the long-term average of 217 

𝜃 𝑡 .  The last term, 𝑊 𝑥, 𝑡 , is meant to capture the “weather”, i.e. those fluctuations in 218 

temperature over space and time that are neither part of the long-term evolution of the average 219 

nor part of the stable spatial structure.  In this paper, we show how it is possible to estimate the 220 

global temperature field by simultaneously constraining all three pieces of 𝑇 𝑥, 𝑡  using the 221 

available data.  (Because we are introducing a large number of symbols, we summarize all the 222 

key symbols in the Appendix.)  223 

As our study is based solely on the use of land-based temperature data, we choose to 224 

restrict the spatial integrals in equation [2] to only the Earth’s land surface.  As a result, our study 225 

will identify 𝜃 𝑡  with the land temperature average only.  Rather than defining a specific base 226 

interval (e.g. 1950-1980) as has been common in prior work, we will show below how it is 227 

possible to reconcile all time periods simultaneously.  As a result, the time integral in equation 228 

[2] should be understood as occurring over the full multi-century period from which data is 229 
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available.  As a side-effect of this approach, 𝑊 𝑥, 𝑡  will also incorporate some multi-decadal 230 

changes that might more typically be described as changes in climate rather than “weather”. 231 

We further break 𝐶 𝑥  into a number of additional components: 232 

 𝐶 𝑥 = 𝜆   latitude 𝑥    + ℎ   elevation 𝑥    + 𝐺(𝑥)   [3]	
  

Here 𝜆 depends only on the latitude of 𝑥, ℎ depends only on the elevation of 𝑥, and 𝐺(𝑥) 233 

is the “geographic anomaly”, i.e. the spatial variations in mean climatology that can’t be 234 

explained solely by latitude and elevation.  With appropriate models for 𝜆 and ℎ it is possible to 235 

explain about 95% of the variance in annual mean temperatures over the surface of the Earth in 236 

terms of just latitude and elevation.  The functional forms of 𝜆, ℎ, and 𝐺(𝑥) will be discussed 237 

below. 238 

Consider a temperature monitoring station at location 𝑥!, we expect the temperature 239 

datum 𝑑! 𝑡!  to ideally correspond to 𝑇 𝑥! , 𝑡! = 𝜃 𝑡! + 𝐶 𝑥! +𝑊 𝑥! , 𝑡! .  More generally, 240 

we assert that: 241 

 𝑑! 𝑡! = 𝜃 𝑡! + 𝑏! +𝑊 𝑥! , 𝑡! + 𝜖!,! [4]	
  

Where 𝜖!,! is defined to be error in the i-th station and the j-th time step, and 𝑏! is the 242 

“baseline” temperature for the i-th station necessary to minimize the error.  With this definition  243 

 𝑎! = 𝑏! − 𝐶 𝑥!  [5]	
  

is a measure of the bias at the i-th station relative to the true climatology. 244 

For each of the parameters and fields we have discussed we shall use the “hat” notation, 245 

e.g. 𝜃 𝑡! , 𝑏!, to denote values that are estimated from data and to distinguish them from the true 246 

fields specified by definition.  Given equation [4], it is natural to consider finding fields that 247 

minimize expressions of the form 248 
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 𝑆𝑆𝐷 =    𝑑! 𝑡! − 𝜃 𝑡! − 𝑏! −𝑊 𝑥! , 𝑡!
!

!,!

≈    𝜖!,!!
!,!

 
[6]	
  

 

Where SSD denotes the sum of square deviations and such a minimization would attempt 249 

to minimize the error terms.  Though appealing, [6] is ultimately misguided as 𝑑! 𝑡!  is 250 

distributed highly non-uniformly in both space and time, and the temperature histories at 251 

neighboring stations are highly correlated.  A naïve application of [6] would result in 𝜃 𝑡!  252 

biased towards the most densely sampled regions of the globe. 253 

However, [6] does inspire our first natural set of constraint equations, namely 254 

 𝑏! =
𝑑! 𝑡! − 𝜃 𝑡! −𝑊 𝑥! , 𝑡!!

1!
 

[7]	
  

 

Since 𝑏! is specific to a single station, there is no disadvantage to simply stating that it be 255 

chosen to minimize the error at that specific station. 256 

To determine the other fields, it is instructive to consider the properties that we expect 257 

𝑊 𝑥! , 𝑡!  to have.  To begin, it should have (at least approximately) zero mean over space and 258 

time in accordance with equation [2].  Secondly, we expect that weather fluctuations should be 259 

highly correlated over short distances in space.  These considerations are very similar to the 260 

fundamental assumptions of the spatial statistical analysis technique known as Kriging (Krige 261 

1951, Cressie 1990, Journel 1989).  Provided the assumptions of Kriging are met, this technique 262 

provides best linear unbiased estimator of the underlying spatial field. 263 

The simple Kriging estimate of a field, 𝑀 𝑥 , from a collection of measurements 𝑀! 264 

having positions 𝑥! is: 265 
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 𝑀 𝑥 = 𝐾! 𝑥   𝑀!

!

!!!

 [8]	
  

 266 

 
𝐾! 𝑥
⋮

𝐾! 𝑥
=

𝜎!! Cov 𝑥!, 𝑥!
Cov 𝑥!, 𝑥! 𝜎!!

⋯ Cov 𝑥!, 𝑥!
Cov 𝑥!, 𝑥!

⋮ ⋱ ⋮
Cov 𝑥! , 𝑥! Cov 𝑥! , 𝑥! ⋯ 𝜎!!

!!

Cov 𝑥, 𝑥!
⋮

Cov 𝑥, 𝑥!
 

[9]	
  

 

Where 𝜎!! is the variance at the i-th site and Cov 𝑎, 𝑏  is the covariance between sites 𝑎 267 

and 𝑏.  If the covariance is known and 𝑀! are sampled from an underlying population having 268 

zero mean, then equation [8] provides the best linear unbiased estimate of the field 𝑀 𝑥 .  In 269 

particular, Kriging describes a natural way to adjust the weight that each record receives in order 270 

to avoid overweighting densely sampled regions.  This adjustment for station density is an 271 

intrinsic part of the inverse covariance matrix. 272 

In order to take advantage of the statistical properties of simple Kriging, it is necessary 273 

that the data field on which the interpolation is based have zero mean.  However, this limitation 274 

is removed by “ordinary” Kriging where the addition of extra parameter(s) is used to transform 275 

the data set by removing known spatial structure (Journel 1989, Cressie 1990).  In our case, it is 276 

natural to identify the sampled data as: 277 

 𝑀! = 𝑑! 𝑡! − 𝜃 𝑡! − 𝑏! [10]	
  

which would be expected to have zero mean per equation [4].  For the “ordinary” Kriging 278 

approach the ideal parameterization is found by choosing parameters 𝜃 and 𝑏!   that minimize the 279 

average variance of the field, e.g. 280 
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 Minimize:  𝑀 𝑥, 𝑡 !𝑑𝑥!"#$!!!  !"#$%&'  [11]	
  

In most practical uses of Kriging it is necessary to estimate or approximate the covariance 281 

matrix in equation [9] based on the available data (Krige 1951, Cressie 1990, Journel 1989).  282 

NOAA also requires the covariance matrix for their optimal interpolation method; they estimate 283 

it by first constructing a variogram during a time interval with dense temperature sampling and 284 

then decomposing it into empirical spatial modes that are used to model the spatial structure of 285 

the data (Smith and Reynolds 2005).  Their approach is nearly ideal for capturing the spatial 286 

structure of the data during the modern era, but has several weaknesses.  Specifically this method 287 

assumes that the spatial structures are adequately constrained during a brief calibration period 288 

and that such relationships remain stable even over an extended period of climate change. 289 

We present an alternative that preserves many of the natural spatial considerations 290 

provided by Kriging, but also shares characteristics with the local averaging approach adopted by 291 

GISS (Hansen et al 1999, Hansen and Lebedeff 1987).  If the variance of the underlying field 292 

changes slowly as a function of location, then the covariance function can be replaced with the 293 

correlation function, 𝑅 𝑎, 𝑏 , which leads to the formulation that: 294 

 
𝑆!! 𝑥, 𝑡!

⋮
𝑆!! 𝑥, 𝑡!

=

1 𝑅 𝑥!! , 𝑥!!
𝑅 𝑥!! , 𝑥!! 1

⋯
𝑅 𝑥!! , 𝑥!!
𝑅 𝑥!! , 𝑥!!

⋮ ⋱ ⋮
𝑅 𝑥!! , 𝑥!! 𝑅 𝑥!! , 𝑥!! ⋯ 1

!!

𝑅 𝑥, 𝑥!!
⋮

𝑅 𝑥, 𝑥!!
 

[12]	
  

 

Where 𝑎!…𝑎! denotes the collection of stations active at time 𝑡!, and thus 295 

 𝑊 𝑥, 𝑡! = 𝑆!! 𝑥, 𝑡! 𝑑!! 𝑡! − 𝜃 𝑡! − 𝑏!!

!

!!!

 [13]	
  

The Kriging formulation is most efficient at capturing fluctuations which have a scale 296 

length comparable to the correlation length; however, it also permits the user to find finer 297 
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structure if more densely positioned data is provided.  In particular, in the limit of infinitely 298 

dense data, the Kriging estimate of the field will necessarily match the field exactly.  This is in 299 

direct contrast to the GISS and HadCRU averaging approaches which will always smooth over 300 

fine structure. 301 

A further modification is made by assuming that 𝑅 𝑎, 𝑏 ≈ 𝑅 𝑑 , where 𝑑 = 𝑎 − 𝑏  302 

denotes the distance between 𝑎 and 𝑏.  This allows us to parameterize the correlation field as a 303 

simple function of one variable, though it admittedly neglects differences in correlation that 304 

might be related to factors such as latitude, altitude, and local vegetation, etc.  The correlation 305 

function is parameterized using: 306 

 𝑅 𝑑 = 𝑒! !!!"!!!!!!!!!!!! + 𝜇 [14]	
  

This is compared to a reference data set based on randomly selecting 500,000 pairs of 307 

stations, and measuring the correlation of their non-seasonal temperature fluctuations provided 308 

they have at least ten years of overlapping data.  The resulting data set and fit are presented in 309 

Figure 2.  Pair selection was accomplished by choosing random locations on the globe and 310 

locating the nearest temperature records, subject to a requirement that it be no more than 100 km 311 

from the chosen random location.  The small constant term 𝜇 measures the correlation over the 312 

very largest distance scale; however, for the purposes of equation [12] it is computationally 313 

advantageous to set 𝜇 = 0 which we did while scaling the rest of equation [14] by 1/(1− 𝜇) to 314 

compensate near 𝑑 = 0.  This allows us to treat stations at distances greater than ~4000 km as 315 

completely uncorrelated, which greatly simplifying the matrix inversion in equation [12] since a 316 

majority of the matrix elements are now zeros.  Figure 2 shows that the correlation structure is 317 

substantial out to a distance of ~1000 km, and non-trivial to ~2000 km from each site. 318 

 319 
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Figure 2.  Mean correlation versus distance curve   320 

 321 

 322 

Based on the data, the best fit values in equation [14] were 𝛼 = 0.1276, 𝛽 = 2.4541 x 10-4 / km, 𝛾 323 

=  5.3881 x 10-7 / km2, 𝜀 =  -2.7452 x 10-11 / km3, 𝜃 = 8.3007 x 10-14 / km4 and 𝜇 = 0.0272.  These 324 

were the values we used in the Berkeley Earth temperature reconstruction method. 325 

In Figure 3 we show similar fits using station pairs restricted by either latitude or 326 

longitude.  In the case of longitude, we divide the Earth into 8 longitude bands and find that the 327 

correlation structure is very similar across each.  The largest deviation occurs in the band 328 

centered at 23 W with reduced correlation at short distances.  This band is one of several that 329 

include relatively few temperature stations as it spans much of the Atlantic Ocean, and so this 330 
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deviation might be primarily a statistical fluctuation.  The deviations observed in Figure 3 for 331 

latitude bands are more meaningful however.  We note that latitude bands show decreasing 332 

short-range correlation as one approaches the equator and a corresponding increase in long-range 333 

correlation.  Both of these effects are consistent with decreased weather variability in most 334 

tropical areas.  These variations, though non-trivial, are relatively modest for most regions.  For 335 

the current presentation we shall restrict ourselves to the simple correlation function given by 336 

equation [14], though further refinements of the correlation function are likely to be a topic of 337 

future research. 338 

 339 

Figure 3.  Correlation versus distance fits using only stations selected from portions of the Earth 340 

 341 

 342 

We note that the correlation in the limit of zero distance, 𝑅 0 = 0.8802, has a natural 343 

and important physical interpretation.  It is an estimate of the correlation that one expects to see 344 

between two typical weather monitors placed at the same location.  By extension, if we assume 345 

such stations would report the same temperature except that each is subject to random and 346 

uncorrelated error, then it follows that 1− 𝑅 0 = 12.0% of the non-seasonal variation in the 347 

typical station record is caused by measurement noise that is unrelated to the variation in the 348 
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underlying temperature field.  Since the average root-mean-square non-seasonal variability is 349 

~2.0 C, it follows that an estimate of the short-term instrumental noise for the typical month at a 350 

typical station is ~0.47 C at 95% confidence.  This estimate is much larger than the 351 

approximately 0.06 C typically used for the random monthly measurement error (Folland et al. 352 

2001).  Our correlation analysis suggests that such estimates may understate the amount of 353 

random noise introduced by local and instrumental effects.  However, we note that the same 354 

authors assign an uncertainty of 0.8 C to the homogenization process they use to remove longer-355 

term biases.  We suspect that the difficulty they associate with homogenization is partially 356 

caused by the same short-term noise that we observe.  However, our correlation estimate would 357 

not generally include long-term biases that cause a station to be persistently too hot or too cold, 358 

and so the estimates are not entirely comparable.  The impact of short-term local noise on the 359 

ultimate temperature reconstruction can be reduced in regions where stations are densely located 360 

and thus provide overlapping coverage.  The simple correlation function described above would 361 

imply that each temperature station captures ! ! !!!
!!!

= 0.58% of the Earth’s temperature field; 362 

equivalently, 180 ideally distributed weather stations would be sufficient to capture nearly all of 363 

the expected structure in the Earth’s monthly mean anomaly field.  This is similar to the estimate 364 

of 110 to 180 stations provided by Jones 1994.  We note that the estimate of 180 stations 365 

includes the effect of measurement noise.  Removing this consideration, we would find that the 366 

underlying monthly mean temperature field has approximately 115 independent degrees of 367 

freedom.  In practice though, quality control and bias correction procedures will substantially 368 

increase the number of records required. 369 

The new Kriging coefficients 𝑆! 𝑥, 𝑡!  defined by equation [12] also have several natural 370 

interpretations.  Firstly the average of 𝑆! 𝑥, 𝑡!   over land: 371 
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0 ≤
𝑆! 𝑥, 𝑡! 𝑑𝑥

1  𝑑𝑥
< 1 

[15]	
  

 

can be interpreted as the total weight in the global land-surface average attributed to the i-th 372 

station at time 𝑡!.  Secondly, the use of correlation rather than covariance in our construction, 373 

gives rise to a natural interpretation of the sum of 𝑆! 𝑥, 𝑡!  over all stations.  Because Kriging is 374 

linear and our construction of R is positive definite, it follows that: 375 

0 ≤ 𝐹 𝑥, 𝑡! ≡ 𝑆! 𝑥, 𝑡!
!

≤ 1 
[16]	
  

 

Where 𝐹 𝑥, 𝑡!  has the qualitative interpretation as the fraction of the 𝑊 𝑥, 𝑡!  field that 376 

has been effectively constrained by the data.  The above is true even though individual terms 377 

𝑆! 𝑥, 𝑡!  may in general be negative.  Since the true temperature anomaly is  378 

𝜃(𝑡!)+𝑊 𝑥, 𝑡! = 𝜃(𝑡!)+ 𝑆! 𝑥, 𝑡! 𝑑! 𝑡! − 𝑏! − 𝜃(𝑡!)
!

= 1− 𝐹 𝑥, 𝑡! 𝜃(𝑡!)+ 𝑆! 𝑥, 𝑡! 𝑑! 𝑡! − 𝑏!
!

 

[17]	
  

 

we see that in the limit 𝐹 𝑥, 𝑡! → 1, the temperature estimate at 𝑥 depends only on the local data 379 

𝑑! 𝑡! , while in the limit 𝐹 𝑥, 𝑡! ≪ 1 the temperature field at 𝑥 is estimated to have the same 380 

value as the global average of the data.  For diagnostic purposes it is also useful to define: 381 

 
𝐹 𝑡! =

𝐹 𝑥, 𝑡!   𝑑𝑥
1  𝑑𝑥

 [18]	
  

which provides a measure of total field completeness as a function of time. 382 

 Under the ordinary Kriging formulation, we would expect to find the parameters 𝜃 𝑡!  383 

and 𝑏! by minimizing a quality of fit metric: 384 
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Minimizing this quantity can be shown to be equivalent to satisfying at all times the set of 385 

equations given by 386 

 𝑊 𝑥, 𝑡!   𝐹 𝑥, 𝑡!   𝑑𝑥 = 0 [20]	
  

This is nearly identical to the constraint in equation [2] that: 387 

 𝑊 𝑥, 𝑡!   𝑑𝑥 = 0 [21]	
  

This latter criterion is identical to equation [20] in both the limit 𝐹 𝑥, 𝑡! → 1, indicating 388 

dense sampling, and the limit 𝐹 𝑥, 𝑡! → 0, indicating an absence of sampling since 𝑊 𝑥, 𝑡!  389 

also becomes 0 in this limit.  We choose to accept equation [2] as our fundamental constraint 390 

equation rather than equation [20].  This implies that our solution is only an approximation to the 391 

ordinary Kriging solution in the spatial mode; however, making this approximation confers 392 

several advantages.  First, it ensures that 𝜃 𝑡!  and 𝑏! retain their natural physical interpretation.  393 

Secondly, computational advantages are provided by isolating the 𝑆! 𝑥, 𝑡!  so that the integrals 394 

might be performed independently for each station. 395 

Given equations [7] and [13] imposing criterion [2] actually constrains the global average 396 

temperature 𝜃(𝑡!) nearly completely.  Though not immediately obvious, constraints [7], [13] and 397 

[21] leave a single unaccounted for degree of freedom.  Specifically one can adjust all 𝜃(𝑡!) by 398 

any arbitrary additive factor provided one makes a compensating adjustment to all 𝑏!.  This last 399 

degree of freedom can be removed by specifying the climatology 𝐶 𝑥 , applying the zero mean 400 

criterion from equation [2] and assuming that the local anomaly distribution (equation [5]) will 401 

also have mean 0.  This implies:  402 

 𝑊 𝑥, 𝑡!
! 𝑑𝑥 [19]	
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 𝐶 𝑥! = 𝜆 𝑥! + ℎ 𝑥! + 𝐺(𝑥!)   ≈ 𝑏! [22]	
  

 We parameterize ℎ 𝑥  as a simple quadratic function of elevation and parameterize 𝜆 𝑥  403 

as a piece-wise linear function of the absolute value of latitude with 11 knots equally spaced in 404 

the cosine of latitude.  For 𝐺(𝑥) we reuse the Kriging formulation developed above, with a 405 

modification 406 

 
𝐵! 𝑥
⋮

𝐵! 𝑥
=

1 + 𝑛! − 1 𝑅 0
𝑛!

𝑅 𝑥!, 𝑥!

𝑅 𝑥!, 𝑥!
1 + 𝑛! − 1 𝑅 0

𝑛!

⋯ 𝑅 𝑥!, 𝑥!
𝑅 𝑥!, 𝑥!

⋮ ⋱ ⋮

𝑅 𝑥! , 𝑥! 𝑅 𝑥! , 𝑥! ⋯
1 + 𝑛! − 1 𝑅 0

𝑛!

!!

𝑅 𝑥, 𝑥!
⋮

𝑅 𝑥, 𝑥!
 

[23]	
  

 

 
𝐺 𝑥 = 𝐵! 𝑥 ∗ 𝑏! − 𝜆 𝑥 − ℎ 𝑥

!

!!!

 
[24]	
  

where 𝑛! is the number of months of data for the i-th station.  The modified diagonal terms on 407 

the correlation matrix are the natural effect of treating the value 𝑏! as if it were entered into the 408 

Kriging process 𝑛!   times, which appropriately gives greater weight to values of 𝑏! that are more 409 

precisely constrained.  As noted previously the factors associated with latitude and altitude 410 

collectively capture ~95% of the variance in the stationary climatology field.  Most of the 411 

remaining structure is driven by dynamical processes (e.g. ocean and atmospheric circulation) or 412 

by boundary conditions such as the nearness to an ocean. 413 

This final normalization described here has the effect of placing the 𝜃(𝑡!) on an absolute 414 

scale such that these values are a true measure of mean temperature and not merely a measure of 415 

a temperature anomaly.  In practice, we find that the normalization to an absolute scale is 416 

considerably more uncertain than the determination of relative changes in temperature.  This 417 

occurs due to the large range of variations in 𝑏! from nearly 30 C at the tropics to about -50 C in 418 

Antarctica.  This large variability makes it relatively difficult to measure the spatial average 419 
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temperature, and as a result there is more measurement uncertainty in the estimate of the absolute 420 

temperature normalization than there is in the measurement of changes over time. 421 

The preceding outline explains the core of our analysis process.  However, we make other 422 

modifications to address issues of bias correction and station reliability.  Whereas other groups 423 

use a procedure they refer to as homogenization, our approach is different; we call it the scalpel. 424 

4. Homogenization and the Scalpel  425 

Temperature time series may be subject to many measurement artifacts and microclimate 426 

effects (Folland et al. 2001, Peterson and Vose 1997, Brohan et al. 2006, Menne et al. 2009, 427 

Hansen et al. 2001).  Measurement biases often manifest as abrupt discontinuities arising from 428 

changes in instrumentation, site location, nearby environmental changes (e.g. construction), and 429 

similar artifacts.  They can also derive from gradual changes in instrument quality or calibration, 430 

for example, fouling of a station due to accumulated dirt or leaves can change the station’s 431 

thermal or air flow characteristics.  In addition to measurement problems, even an accurately 432 

recorded temperature history may not provide a useful depiction of regional scale temperature 433 

changes due to microclimate effects at the station site that are not representative of large-scale 434 

climate patterns.  The most widely discussed microclimate effect is the potential for “urban heat 435 

islands” to cause spuriously large temperature trends at sites in regions that have undergone 436 

urban development (Hansen et al. 2010, Oke 1982, Jones et al. 1990).  At noted in the prior 437 

section, we estimate that on average 12% of the non-seasonal variance in a typical monthly 438 

temperature time series is caused by short-term local noise of one kind or another.  All of the 439 

existing temperature analysis groups use processes designed to detect various discontinuities in a 440 

temperature time series and “correct” them by introducing adjustments that make the 441 

presumptively biased time series look more like neighboring time series and/or regional averages 442 
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(Menne and Williams 2009, Jones and Moberg 2003, Hansen et al. 1999).  This data correction 443 

process is called “homogenization.” 444 

Rather than correcting data, we rely on a philosophically different approach.  Our method 445 

has two components: 1) Break time series into independent fragments at times when there is 446 

evidence of abrupt discontinuities, and 2) Adjust the weights within the fitting equations to 447 

account for differences in reliability.  The first step, cutting records at times of apparent 448 

discontinuities, is a natural extension of our fitting procedure that determines the relative offsets 449 

between stations, encapsulated by 𝑏!, as an intrinsic part of our analysis.  We call this cutting 450 

procedure the scalpel. Provided that we can identify appropriate breakpoints, the necessary 451 

adjustment will be made automatically as part of the fitting process.  We are able to use the 452 

scalpel approach because our analysis method can use very short records, whereas the methods 453 

employed by other groups generally require their time series be long enough to contain a 454 

reference interval. 455 

The addition of breakpoints will generally improve the quality of fit provided they occur 456 

at times of actual discontinuities in the record.  The addition of unnecessary breakpoints (i.e. 457 

adding breaks at time points which lack any real discontinuity), should be trend neutral in the fit 458 

as both halves of the record would then be expected to tend towards the same 𝑏! value; however, 459 

unnecessary breakpoints can amplify noise and increase the resulting uncertainty in the record 460 

(discussed below).   461 

There are in general two kinds of evidence that can lead to an expectation of a 462 

discontinuity in the data.  The first is “metadata”, such as documented station moves or 463 

instrumentation changes.  For the current paper, the only “metadata” cut we use is based on gaps 464 

in the record; if a station failed to report temperature data for a year or more, then we consider 465 
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that gap as evidence of a change in station conditions and break the time series into separate 466 

records at either side of the gap.  In the future, we will extend the use of the scalpel to processes 467 

such as station moves and instrumentation changes; however, the analysis presented below is 468 

based on the GHCN dataset which does not provide the necessary metadata to make those cuts.  469 

The second kind of evidence requiring a breakpoint is an apparent shift in the statistical 470 

properties of the data itself (e.g. mean, variance) when compared to neighboring time series that 471 

are expected to be highly correlated. When such a shift is detected, we can divide the data at that 472 

time, making what we call an “empirical breakpoint”.  The detection of empirical breakpoints is 473 

a well-developed field in statistics (Page 1955, Tsay 1991, Hinkley 1971, Davis 2006), though 474 

relatively little work has been done to develop the case where spatially correlated data are widely 475 

available.  As a result, the existing groups have each developed their own approach to empirical 476 

change point detection (Menne and Williams 2009; Jones and Moberg 2003, Hansen et al. 1999).  477 

In the present paper, we use a simple empirical criterion that is not intended to be a complete 478 

study of the issue.  Like prior work, the present criterion must be applied prior to any averaging.  479 

In principle, change point detection could be incorporated into an iterative averaging process that 480 

uses the immediately preceding average to help determine a set of breakpoints for the next 481 

iteration; however, no such work has been done at present. For the present paper, we follow 482 

NOAA in considering the neighborhood of each station and identifying the most highly 483 

correlated adjacent stations.  A local reference series is then constructed by a weighted average 484 

of the neighboring stations.  This is compared to the station’s records, and a breakpoint is 485 

introduced at places where there is an abrupt shift in mean larger than 4 standard deviations.  486 

This empirical technique results in approximately 1 cut for every 12.2 years of record, which is 487 

somewhat more than the changepoint occurrence rate of one every 15-20 years reported by 488 
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Menne et al. 2009.  Future work will explore alternative cut criteria, but the present effort is 489 

meant merely to incorporate the most obvious change points and show how our averaging 490 

technique can incorporate the discontinuity adjustment process in a natural way. 491 

5. Outlier Weighting 492 

The next potential problem to consider is point outliers, i.e. single data points that vary 493 

greatly from the expected value as determined by the local average. Removal of outliers is done 494 

by defining the difference between a temperature stations report and the expected value at that 495 

same site: 496 

Δ! 𝑡! =   𝑑! 𝑡! − 𝑏! − 𝜃 𝑡! −𝑊!(𝑥! , 𝑡!) [25]	
  

where 𝑊! 𝑥! , 𝑡!  approximates the effect of constructing the 𝑊 𝑥! , 𝑡!  field without the 497 

influence of the i-th station: 498 

𝑊! 𝑥! , 𝑡! =𝑊 𝑥! , 𝑡! − 𝑆! 𝑥! , 𝑡! (𝑑! 𝑡! − 𝑏! − 𝜃 𝑡! ) [26]	
  

The scale of the typical measurement error (𝑒 ≈ 0.55 C) is estimated from: 499 

𝑒! =
Δ! 𝑡!

!
!,!

1!,!
 

[27]	
  

	
  

The outlier weight adjustment is defined as 500 

 𝑂!,! =
1 if   Δ! 𝑡!

!
≤ (2.5𝑒)!

2.5𝑒 Δ! 𝑡! otherwise
 

[28]	
  

 

Equation [28] specifies a downweighting term to be applied for point outliers that are 501 

more than 2.5𝑒 from the modeled expectation.  This outlier weighting is used to define a 502 

modified expression for 𝑏!: 503 
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 𝑏!
∗
=

𝑂!,! 𝑑! 𝑡! − 𝜃 𝑡! −𝑊 𝑥! , 𝑡!!

𝑂!,!!
 

[29]	
  

 

and also incorporated into the site weighting discussed below. 504 

This choice of target threshold, 2.5𝑒, is partly arbitrary but was selected with the 505 

expectation that most of the measured data should be unaffected.  If the underlying data 506 

fluctuations were normally distributed, we would expect this process to crop 1.25% of the data.  507 

In practice, we observe that the data fluctuation distribution tends to be intermediate between a 508 

normal distribution and a Laplace distribution.  In the Laplace limit, we would expect to crop 509 

2.9% of the data, so the actual exclusion rate can be expected to be intermediate between 1.25% 510 

and 2.9% for the typical station record.   511 

Of course, the goal is not to remove legitimate data, but rather to limit the impact of 512 

erroneous outliers.  In defining equation [28], we adjusted the weight of outliers to a fixed target, 513 

2.5𝑒, rather than to simply downweight them to zero.  This helps to ensure numerical stability.   514 

6. Reliability Weighting 515 

In addition to point outliers, climate records often vary for other reasons that can affect an 516 

individual record’s reliability at the level of long-term trends.  For example, we also need to 517 

consider the possibility of gradual biases that lead to spurious trends.  In this case we assess the 518 

overall “reliability” of the record by measuring each record’s average level of agreement with the 519 

expected field 𝑇 𝑥, 𝑡  at the same location. 520 

For each station we compute a measure of the quality of fit: 521 

 
𝑒!! =

min  { Δ! 𝑡!
!
, 25𝑒!}!

1!
 

[30]	
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The “min” is used to avoid giving too great a weight to the most extreme outliers when 522 

judging the reliability of the series.  The station weight is then defined as: 523 

 
𝜔! =

2𝑒!

𝑒! + 𝑒!!
 

[31]	
  

 

Due to the limits on outliers from the previous section, the station weight has a range 524 

between 1/13 and 2, effectively allowing a “perfect” station record to receive up to 26 times the 525 

weight of a “terrible” record.  This functional form was chosen for the station weight due to 526 

several desirable qualities.  The typical record is expected to have a weight near 1, with poor 527 

records being more severely downweighted than good records are enhanced.  Using a 528 

relationship that limits the potential upweighting of good records was found to be necessary in 529 

order to ensure efficient convergence and numerical stability.  A number of alternative weighting 530 

and functional forms with similar properties were also considered, but we found that the 531 

construction of global temperature time series were not very sensitive to the details of how the 532 

downweighting of inconsistent records was handled. 533 

After defining the station weight, we need to incorporate this information into the spatial 534 

averaging process, e.g. equation [13], by adjusting the associated Kriging coefficients.  Ideally, 535 

one might use the station weights to modify the correlation matrix (equation [12]) and recompute 536 

the Kriging coefficients.  However, it is unclear what form of modification would be appropriate, 537 

and frequent recomputation of the required matrix inverses would be computationally 538 

impractical.  So, we opted for a more direct approach to the reweighting of the Kriging solution.  539 

We define updated spatial averaging coefficients: 540 

 
𝑆!∗ 𝑥, 𝑡! =

𝜔!𝑆! 𝑥, 𝑡!
𝜔!𝑆! 𝑥, 𝑡!! + 1− 𝐹 𝑥, 𝑡!

 
[32]	
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This expression is motivated by the representation of the true anomaly in equation [17] 541 

as: 542 

𝜃(𝑡!)+𝑊 𝑥, 𝑡! = 1− 𝐹 𝑥, 𝑡! 𝜃(𝑡!)+ 𝑆! 𝑥, 𝑡! 𝑑! 𝑡! − 𝑏!
!

 
[33]	
  

 

and the desire to leave the expected variance of the right hand side unchanged after reweighting.  543 

Because 𝐹 𝑥, 𝑡! = 𝑆! 𝑥, 𝑡!!  it follows that 𝑆!∗ 𝑥, 𝑡!  is equal to 𝑆! 𝑥, 𝑡!  if all the station 544 

weights are set to 1.  The 1− 𝐹 𝑥, 𝑡!  term in the denominator can be understood as 545 

measuring the influence of the global mean field, rather than the local data, in the construction of 546 

the local average temperature estimate.  The omission of this term in equation [32] would lead to 547 

a weighting scheme that is numerically unstable. 548 

It is important to note that equation [32] merely says that the local weather average 549 

𝑊 𝑥, 𝑡!  should give proportionally greater weight to more reliable records.  However, if all of 550 

the records in a given region have a similar value of 𝜔!, then they will all receive about the same 551 

weight regardless of the actual numerical value of 𝜔!.  Specifically, we note 𝜔! does not directly 552 

influence 𝜃 𝑡! .  This behavior is important as some regions of the Earth, such as Siberia, tend to 553 

have broadly lower values of 𝜔! due to the high variability of local weather conditions.  554 

However, as long as all of the records in a region have similar values for 𝜔!, then the individual 555 

stations will still receive equal and appropriate weight in the global average.  This avoids a 556 

potential problem that high variability regions could be underrepresented in the construction the 557 

global time series 𝜃 𝑡! . 558 

As noted above, the formulation of equation [32] is not necessarily ideal compared to 559 

processes that could adjust the correlation matrix directly, and hence this approach should be 560 

considered as an approximate approach for incorporating station reliability differences.  In 561 
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particular, the range bounds shown for 𝑆! 𝑥, 𝑡! , such as that given for equation [16], will not 562 

necessarily hold for 𝑆!∗ 𝑥, 𝑡! . 563 

Equation [32] leads to a natural expression for the outlier and reliability adjusted weather 564 

field 565 

 
𝑊∗ 𝑥, 𝑡! = 𝑂!,!𝑆!!

∗ 𝑥, 𝑡! 𝑑!! 𝑡! − 𝜃 𝑡! − 𝑏!!
∗

!

!!!

 [34]	
  

𝑏!
∗
 and 𝑊∗ 𝑥, 𝑡!  are now used to replace the original values in the execution of the model.  In 566 

order to ensure robustness, this process of determining site and outlier weights is repeated many 567 

times until the parameter values stabilize.  We find that we typically require 10 to 30 iterations to 568 

satisfy our convergence criteria. 569 

Implicit in the discussion of station reliability considerations are several assumptions.  570 

Firstly, we assume that the local weather function constructed from many station records, 571 

𝑊 𝑥, 𝑡! , will be a better estimate of the local temperature than any individual record could be.  572 

This assumption is generally characteristic of all averaging techniques; however, we can’t rule 573 

out the possibility of large scale systematic biases.  Our reliability adjustment techniques can 574 

work well when one or a few records are noticeably inconsistent with their neighbors, but large 575 

scale biases affecting many stations could cause such comparative estimates to fail.  Secondly, 576 

we assume that the reliability of a station is largely invariant over time.  This will in general be 577 

false; however, the scalpel procedure discussed previously will help us here.  By breaking 578 

records into multiple pieces on the basis of metadata changes and/or empirical discontinuities, 579 

we then also have the opportunity to assess the reliability of each fragment individually.  A 580 

detailed comparison and contrast of our results with those obtained using other approaches to 581 

deal with inhomogeneous data will be presented elsewhere. 582 
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7. Uncertainty Analysis  583 

We consider there to be two essential forms of quantifiable uncertainty in the Berkeley 584 

Earth averaging process: 585 

1. Statistical / Data-Driven Uncertainty: This is the error made in estimating the 586 

parameters 𝑏! and 𝜃 𝑡!  due to the fact that the data, 𝑑! 𝑡! , may not be an 587 

accurate reflection of the true temperature changes at location 𝑥!.  588 

2. Spatial Incompleteness Uncertainty: This is the expected error made in estimating 589 

the true land-surface average temperature due to the network of stations having 590 

incomplete coverage of all land areas. 591 

In addition, there is “structural” or “model-design” uncertainty, which describes the error 592 

a statistical model makes compared to the real-world due to the design of the model.  Given that 593 

it is impossible to know absolute truth, model limitations are generally assessed by attempting to 594 

validate the underlying assumptions that a model makes and comparing those assumptions to 595 

other approaches used by different models.  For example, we use a site reliability weighting 596 

procedure to reduce the impact of anomalous trends (such as those associated with urban heat 597 

islands), while other models (such as those developed by GISS) attempt to remove anomalous 598 

trends by applying various corrections.  Such differences are an important aspect of model 599 

design.  In general, it is impossible to directly quantify structural uncertainties, and so they are 600 

not a factor in our standard uncertainty model.  However, one may be able to identify model 601 

limitations by drawing comparisons between the results of the Berkeley Average and the results 602 

of other groups.  Discussion of our results and comparison to those produced by other groups 603 

will be provided below.   604 
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Another technique for identifying structural uncertainty is to run the same model on 605 

multiple data sets that differ primarily based on factors that one suspects may give rise to 606 

unaccounted for model errors.  For example, one can perform an analysis of rural data and 607 

compare it to an analysis of urban data to look for urbanization biases.  Such comparisons tend to 608 

be non-trivial since it is rare that one can construct data sets that isolate the experimental 609 

variables without introducing other confounding variations.  We will not provide any such 610 

analysis of such experiments in this paper; however, additional papers submitted by our group 611 

(Wickham et al. submitted; Muller et al. submitted) find that objective measures of station 612 

quality and urbanization do not have with a statistically significant impact on our results over 613 

most of the available record.  In other words, the averaging techniques combined with the bias 614 

adjustment procedures we have described appear adequate for dealing with those data quality 615 

issues to within the limits of the uncertainties that nonetheless exist from other sources.  The one 616 

possible exception is that Wickham et al. observed that rural stations may slightly overestimate 617 

global land-surface warming during the most recent decade.  The suggested effect is small and 618 

opposite in sign to what one would expect from an urban heat island bias.  At the present time we 619 

are not incorporating any explicit uncertainty to account for such factors, though the data driven 620 

uncertainty will implicitly capture the effects of variations in data behavior across the field. 621 

The other analysis groups generally discuss a concept of “bias error” associated with 622 

systematic biases in the underlying data (e.g. Brohan et al. 2006; Smith and Reynolds 2005).  To 623 

a degree these concepts overlap with the discussion of “structural error” in that the prior authors 624 

tend to add extra uncertainty to account for factors such as urban heat islands and instrumental 625 

changes in cases when they do not directly model them.  Based on graphs produced by HadCRU, 626 

such “bias error” was considered to be a negligible portion of total error during the critical 1950-627 
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2010 period of modern warming, but leads to an increase in total error up to 100% circa 1900 628 

(Brohan et al. 2006).  In the current presentation we will generally ignore these additional 629 

uncertainties, which will be discussed once future papers have examined the various contributing 630 

factors individually. 631 

8. Statistical Uncertainty – Overview 632 

Statistical uncertainty is a reflection of the errors introduced into the determination of 633 

model parameters due to the fact that the basic data, 𝑑! 𝑡! , may not be an accurate reflection of 634 

the true temperature history.  In order to place uncertainties on the global mean temperature time 635 

series 𝜃 𝑡! , we apply two approaches, a systematic “sampling” method, and a “jackknife” 636 

method (Miller 1974, Tukey 1958, Quenouille 1949).   637 

These approaches are both different from the approaches that have been commonly used 638 

in the past.  Prior groups generally assess uncertainly from the bottom-up by assigning 639 

uncertainty to the initial data and all of the intermediate processing steps.  This is a complicated 640 

process due to the possibility of correlated errors and the risk that those uncertainties may 641 

interact in unexpected ways.  Further, one commonly applies the same amount of data 642 

uncertainty to all records, even though we would expect that some records are more accurate 643 

than others. 644 

As an alternative, we approach the statistical uncertainty quantification from a top-down 645 

direction.  At its core, this means measuring how much our result would change if there were 646 

variations in the amount of data available.  By performing the entire analysis chain with small 647 

variations in the amount of data available we can assess the impact of data noise in a way that 648 

bypasses concerns over correlated error and varying record uncertainty.  For a complex analysis 649 



 34 

system this will generally provide a more accurate measure of the statistical uncertainty, though 650 

there are some additional nuances. 651 

9. Statistical Uncertainty – Sampling Method  652 

The sampling method we apply relies on subsampling the station network, recomputing 653 

the temperature time series, and examining the variance in the results across the different 654 

samples.  In the implementation we used for the current paper, each station is randomly assigned 655 

to one of five groups.  Each of these groups can be expected to have similar, but somewhat 656 

diminished, spatial coverage compared to the complete sample. For each group of stations we 657 

reapply the averaging process.  This leads to a set of new temperature time series 𝜃! 𝑡! , where 658 

the n index denotes the subsample number.  As each of these new time series is created from a 659 

completely independent station network, we are justified in treating their results as statistically 660 

independent. 661 

For each subsampled network, we compute the mean temperature for an arbitrary period, 662 

e.g.  Jan 1950 to Dec 2000, and subtract this from the data; this gives us five subsampled records 663 

that have the same temperature “anomaly.”  We do this to separate out the uncertainty associated 664 

with relative changes in the global land-surface time series from the larger uncertainty associated 665 

with the estimation of the Earth’s absolute mean temperature.   We then estimate the statistical 666 

uncertainty of 𝜃 𝑡!  as the standard error in the mean of the subsampled values, namely  667 

 
𝜎!"#$%&'( 𝑡! =

𝜃! 𝑡! − 𝜃! 𝑡!
!

!

1!
 [35]	
  

Where 𝜃! 𝑡!  denotes the mean value.  In general, the denominator will be 5 at times 668 

where all five subsamples report a value.  However, since the different subsamples may have 669 

somewhat different time coverage, the number of records reported at early times may be 670 
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different.  We require at least three subsamples report a value in order for an uncertainty to be 671 

reported. Examples of subsampled temperature series and the resulting uncertainty will be 672 

provided with the discussion of GHCN results. 673 

The sampling value could be further refined.  One method would be to repeat this entire 674 

process of creating five subsamples through multiple iterations and average the results. 675 

Unfortunately, though conceptually simple and computationally efficient the sampling 676 

method suffers from a flaw that leads to a systematic underestimation of the statistical 677 

uncertainty in our context.  In forming each subsampled network, 80% of stations must be 678 

eliminated.  This increases the effect of spatial uncertainty associated with each of these 679 

subsamples.  Further, due to the highly heterogeneous history of temperature sampling the newly 680 

unsampled regions in each subnetwork will tend to overlap to a substantial degree leading to 681 

correlated errors in the uncertainty calculation.  Based on a variety of Monte Carlo experiments, 682 

we concluded that the sampling estimates of uncertainty tend to understate the true error by 683 

between 10 and 100% depending on the distribution of the temperature monitoring network at 684 

the time. 685 

10.	
  Statistical	
  Uncertainty	
  –	
  Jackknife	
  Method	
  	
  686 

The “jackknife”, a method developed by Quenoille and John Tukey, is our primary 687 

method for determining statistical uncertainty (Tukey 1958, Quenoille 1949, Miller 1974).  It is a 688 

special modification of the sampling approach, finding its traditional use when the number of 689 

data points is too small to give a good result using ordinary sampling.  Given the fact that we 690 

have many thousands of stations in our records, each with typically hundreds of data points, it 691 

was surprising to us that this method would prove so important.  But despite our large set of data, 692 
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there are time and places that are sparsely sampled.  As noted above, the presence of this sparse 693 

sampling tends to cause the sampling technique to underestimate the statistical uncertainty. 694 

We use the jackknife method in the following way.  Given a set of stations (7280, when 695 

using the GHCN compilation) we construct 8 station groups, each consisting of 7/8 of the data, 696 

with a different 1/8 removed from each group.  The data from each of these data samples is then 697 

run through the entire Berkeley Average machinery to create 8 records 𝜃! 𝑡!  of average global 698 

land temperature vs. time.  Following Quenouille and Tukey, we then create a new set of 8 699 

“effectively independent” temperature records 𝜃!
! 𝑡!  by the jackknife formula    700 

 𝜃!
! 𝑡! = 8  𝜃! 𝑡! −   7  𝜃 𝑡!  [36]	
  

where 𝜃 𝑡!  is the reconstructed temperature record from the full (100%) sample.  Hence we 701 

calculate the standard error among the effectively independent samples: 702 

 
𝜎!"#$$%&'( 𝑡! =

𝜃!
! 𝑡! − 𝜃!

! 𝑡!
!

!

1!
 [37]	
  

We indeed found that the typical statistical uncertainties estimated from the jackknife were, in 703 

general, larger than those estimated from the sampling method.  As the jackknife constructs its 704 

temperature average using a station network that is nearly complete, it is more robust against 705 

spatial distribution effects.  In addition, we can more easily increase the number of samples 706 

without worrying that the network would become too sparse (as could happen if one increased 707 

the number of divisions in the sampling approach). 708 

We studied the relative reliability of the sampling and jackknife methods using over 709 

10,000 Monte Carlo simulations.  For each of these simulations, we created a toy temperature 710 

model of the “Earth” consisting of 100 independent climate regions.  We simulated data for each 711 

region, using a distribution function that was chosen to mimic the distribution of the real data; so, 712 
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for example, some regions had many sites, but some had only 1 or 2.  This model verified that 713 

sparse regions caused problems for the sampling method.   In these tests we found that the 714 

jackknife method gave a consistently accurate measure of the true error (known since in the 715 

Monte Carlo we knew the “truth”) while the sampling would consistently underestimate the true 716 

error.   717 

When we discuss the results for our reanalysis of the GHCN data we will show the error 718 

uncertainties calculated both ways.  The jackknife uncertainties are larger than those computed 719 

via sampling, but based on our Monte Carlo tests, we believe them to be more accurate. 720 

11.	
  Spatial	
  Uncertainty	
  721 

Spatial uncertainty measures the amount of error that is likely to occur in our averages 722 

due to incomplete sampling of land surface areas.  Our primary technique in this case is 723 

empirical.  We look at the sampled area available at past times, superimpose it on the modern 724 

day, and ask how much error would be incurred in measuring the modern temperature field given 725 

only the limited sample area available in the past.  For example, if one only knew the 726 

temperature anomalies for Europe and North America, how much error would be incurred by 727 

using that measurement as an estimate of the global average temperature anomaly?  The process 728 

for making this estimate involves applying the coverage field, 𝐹 𝑥, 𝑡! , that exists at each time 729 

and superimposing it on the nearly complete temperature anomaly fields 𝑊 𝑥, 𝑡!  that exist for 730 

late times, specifically 1960 ≤ 𝑡! ≤ 2000 when spatial land coverage approached 100%.   We 731 

define the estimated average weather anomaly at time 𝑡! based on the sample field available at 732 

time 𝑡! to be: 733 
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 𝜏 𝑡! , 𝑡! =
𝐹 𝑥, 𝑡! 𝑊 𝑥, 𝑡! 𝑑𝑥

𝐹 𝑥, 𝑡! 𝑑𝑥
 

[38]	
  

 

And then define the spatial uncertainty in 𝜃 𝑡!  as: 734 

 𝜎!"#$%#& 𝑡! =   
𝜏 𝑡! , 𝑡! − 𝜏 𝑡! , 𝑡!

!
!"""
!!!!"#$

1!"""
!!!!"#$

 
[39]	
  

 

Ideally 𝐹 𝑥, 𝑡!  would be identically 1 during the target interval 1960 ≤ 𝑡! ≤ 2000 used 735 

as a calibration standard, which would imply that 𝜏 𝑡!, 𝑡! = 0, via equation [21].  However, in 736 

practice these late time fields are only 90-98% complete.  As a result, 𝜎!"#$%#& 𝑡!  computed via 737 

this process will tend to slightly underestimate the uncertainty at late times. 738 

An alternative is to use the correlated error propagation formula: 739 

 𝜎!"#$%#& 𝑡! ≈    1 −
𝐹 𝑥, 𝑡!
𝐹!"#$ 𝑡!

1 −
𝐹 𝑦, 𝑡!
𝐹!"#$ 𝑡!

𝑉 𝑦 𝑉 𝑥 𝑅(𝑥, 𝑦)𝑑𝑥𝑑𝑦 
[40]	
  

 

Where 𝑅(𝑥,𝑦) is the correlation function estimated in equation [14], 𝐹!"#$ 𝑡!  is the 740 

spatial completeness factor defined in equation [18], and 𝑉 𝑥  is square root of the variance at 𝑥 741 

estimated as: 742 

 𝐻 𝑥, 𝑡! = 𝐹 𝑥, 𝑡! if  𝐹 𝑥, 𝑡! ≥ 0.4
0 otherwise

 [41]	
  

 
𝑉 𝑥 =   

𝐻 𝑥, 𝑡!
𝑊 𝑥, 𝑡!
𝐹 𝑥, 𝑡!

!

!

𝐻 𝑥, 𝑡!!
 

[42]	
  

 

The new symbol 𝐻 𝑥, 𝑡!  is introduced to focus the estimates of local variance on only 743 

those times when at least 40% of the variance has been determined by the local data.  In addition, 744 

the term 
! !,!!
! !,!!

 provides a correction to the magnitude of the fluctuations in 𝑊 𝑥, 𝑡!  in the 745 
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presence of incomplete sampling.  Recall that 𝑊 𝑥, 𝑡! → 0 as 𝐹 𝑥, 𝑡! → 0, which reflects the 746 

fact that there can be no knowledge of the local fluctuations in the field when no data is available 747 

in the local neighborhood. 748 

The estimate of 𝜎!"#$%#& 𝑡!  from equation [39] tends to be 30-50% larger than the result 749 

of equation [40] at early times (e.g. pre-1940).  We believe this is because the linearized error 750 

propagation formula in equation [40] and the approximate correlation function estimated in 751 

equation [14] don’t capture enough of the structure of the field, and that the formulation in 752 

equation [39] is likely to be superior at early times.  At late times the two results are nearly 753 

identical; however, both estimates of the uncertainty due to spatial incompleteness at late times 754 

tend be far lower than the statistical uncertainty at late times.  In other words, at times where the 755 

spatial coverage of the Earth’s land surface is nearly complete, the uncertainty is dominated by 756 

statistical factors rather the spatial ones. 757 

As noted above, the empirical uncertainty estimate of equation [39] is partially limited 758 

due to incomplete sampling during the target interval.  To compensate for this we add a small 759 

analytical correction, determined via equation [40] in the computation of our final spatial 760 

uncertainty estimates at regions with incomplete sampling.  This correction is essentially 761 

negligible except at late times. 762 

12. GHCN Results 763 

The analysis method described in this paper has been applied to the 7280 weather stations 764 

in the Global Historical Climatology Network (GHCN) monthly average temperature data set 765 

developed by Peterson and Vose 1997; Menne and Williams 2009.  We used the non-766 

homogenized data set, with none of the NOAA corrections for inhomogeneities included; rather, 767 
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we applied our scalpel method to break records at any documented discontinuity.  We used the 768 

empirical scalpel method described earlier to detect undocumented changes; using this, the 769 

original 7,280 data records were broken into 47,282 record fragments.  Of the 30,590 cuts, 5218 770 

were based on gaps in record continuity longer than 1 year and the rest were found by our 771 

empirical method. We also found a small number of nonsense data points in the raw data, for 772 

example, values exceeding 70 C, records filled with zeros, or other repeated strings of data; these 773 

were eliminated by a pre-filtering process.  In total, 0.8% of the data points were eliminated for 774 

such reasons.  The NOAA analysis process uses their own pre-filtering in their homogenization 775 

and averaging processes, but we chose to handle them directly due to our preference for using 776 

the raw GHCN data with no prior corrections.  A further 0.2% of data was eliminated because 777 

after cutting and filtering the resulting record was either too short to process (minimum length ≥6 778 

months) or it occurred at a time with fewer than 5 total stations active. 779 

It is worth making a special point of noting that after cutting and processing, the median 780 

length of a temperature time series processed by the Berkeley Average was only 7.1 years.  781 

Further, the inner 50% range for station record lengths was 2.7 to 12.8 years.  As already stated, 782 

our climate change analysis system is designed to be very tolerant of short and discontinuous 783 

records which will allow us to work with a wider variety of data than is conventionally 784 

employed. 785 

Figure 4 shows the station locations used by GHCN, the number of active stations vs. 786 

time, and the land area sampled vs. time (calculated using the method described in equation 787 

[18]). The sudden drop in the number of stations ca. 1990 is largely a result of the methodology 788 

used in compiling the GHCN dataset; GHCN generally only accepts records for stations that 789 

explicitly issue a monthly summary report however many stations have stopped reporting 790 
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monthly results and only reported daily ones. Despite this drop, Figure 4(c) shows that the 791 

coverage of the Earth’s land surface remained above 95%, reflecting the broad distribution of the 792 

stations that did remain. 793 

 794 

Figure 4.  Station locations for GHCN dataset, number of active stations over time, and 795 
percentage of the Earth’s land area sampled  796 

 797 

 798 

We applied the Berkeley Average methodology to the GHCN monthly data. The results 799 

and associated uncertainties are shown in Figure 5.  The upper plot shows the 12-month land-800 

only moving average and its associated 95% uncertainty; the lower plot shows the result of 801 
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applying a 10-year moving average.  Applying the methods described here, we find that the 802 

average land temperature from Jan 1950 to Dec 1959 was 8.849 ± 0.033 C, and temperature 803 

average during the most recent decade (Jan 2000 to Dec 2009) was 9.760 ± 0.041 C, an increase 804 

of 0.911 ± 0.042 C.  The trend line for the 20th century is calculated to be 0.733 ± 0.096 805 

C/century, well below the 2.76 ± 0.16 C/century rate of global land-surface warming that we 806 

observe during the interval Jan 1970 to Aug 2011.  (All uncertainties quoted here and below are 807 

95% confidence intervals for the combined statistical and spatial uncertainty).  Though it is 808 

sometimes argued that global warming has abated since the 1998 El Nino event (e.g. Easterling 809 

and Wehner 2009, Meehl et al. 2011), we find no evidence of this in the GHCN land data.  810 

Applying our analysis over the interval 1998 to 2010, we find the land temperature trend to be 811 

2.84 ± 0.73 C / century, consistent with prior decades.  Meehl et al. (2011) associated the recent 812 

decreases in global temperature trends with increased heat flux into the deep oceans.  The fact 813 

that we observe no change in the trend over land would seem to be consistent with the 814 

conclusion that any change in the total global average has been driven solely with oceanic 815 

processes. 816 

 817 
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Figure 5.  Result of the Berkeley Average Methodology applied to the GHCN monthly data 818 

 819 

   820 

In the section on the sampling method, we discussed the determination of statistical 821 

uncertainties by dividing the full data set into five subsamples.  In Figure 6 below we show the 822 

results of doing this for the GHCN data set.  We show this primarily because the sampling 823 

method is more intuitive for many people than is the jackknife, and the charts in Figure 6 make it 824 

clear why the statistical uncertainties are small.  The five completely independent subsamples 825 

produce very similar temperature history when processed via the Berkeley Average 826 

methodology. 827 

 828 
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Figure 6.  Five independent temperature reconstructions  829 
 830 

 831 
 832 

The spatial structure of the climate change during the last century is shown in Figure 7 833 

and found to be fairly uniform, though with greater warming over the high latitudes of North 834 

America and Asia, consistent with prior results (Hansen et al. 2010).  We also show the pattern 835 

of warming since the 1960s, as this is the period during which anthropogenic effects are believed 836 

to have been the most significant.  Warming is observed to have occurred over all continents, 837 

though parts of South America are consistent with no change.  No part of the Earth’s land surface 838 

shows appreciable cooling. 839 

 840 
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Figure 7. Maps showing the decadal average changes in the land temperature field 841 

842 

 843 

 844 

In Figure 8, we compare our land reconstruction to the land reconstructions published by 845 

the three other groups (results updated online, methods described by Brohan et al. 2006; Smith et 846 

al. 2008; Hansen et al. 2010).  Overall our global land average is similar to those obtained by 847 

these prior efforts.  There is some disagreement amongst the three groups, and our result is most 848 

similar overall to NOAA’s work.  The differences apparent in Figure 8 may partially reflect 849 

difference in source data, but they probably primarily reflect differences in methodology. 850 

The GHCN dataset used in the current analysis overlaps strongly with the data used by 851 

other groups.  The GHCN was developed by NOAA and is the sole source of the land-based 852 



 46 

weather station data in their temperature reconstructions (but does not include the ocean data also 853 

used in their global temperature analyses).  In addition, GISS uses GHCN as the source for ~85% 854 

of the time series in their analysis.  The remaining 15% of GISS stations are almost exclusively 855 

US and Antarctic sites that they have added / updated, and hence would be expected to have 856 

somewhat limited impact due to their limited geographic coverage.  HadCRU maintains a 857 

separate data set from GHCN for their climate analysis work though approximately 60% of the 858 

GHCN stations also appear in HadCRU. 859 

 860 

Figure 8.  Comparison of the Berkeley Average to existing land-only averages reported 861 

 862 

 863 
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The GISS and HadCRU work produce lower land-average temperature trends for the late 864 

part of the 20th century.  In this regard, our analysis suggests a degree of global land-surface 865 

warming during the anthropogenic era that is consistent with prior work (e.g. NOAA) but on the 866 

high end of the existing range of reconstructions.  We note that the difference in land average 867 

trends amongst the prior groups has not generally been discussed in the literature.  In part, the 868 

spread in existing land-only records may have received little attention because the three groups 869 

have greater agreement when considering global averages that include oceans (Figure 1).   We 870 

strongly suspect that some of the difference in land-only averages is an artifact of the different 871 

approaches to defining “land-only” temperature analyses.  Our analysis and that produced by 872 

NOAA explicitly construct an average that only considers temperature values over land.  873 

However, that is not the only possible approach.  The literature suggests that the GISS “land-874 

only” data product may be generated by measuring the “global” temperature fields using only 875 

data reported over land.  In this scenario temperature records in coastal regions and on islands 876 

would be extrapolated over the oceans to create a “global” field using only land data. Whether or 877 

not this approach was actually used is unclear from the literature, but it would result in an 878 

overweighting of coastal and oceanic stations.  This would in turn lead to a reduction in the 879 

calculated “land” trend in a way that is qualitatively consistent with the difference observed in 880 

Figure 8.   881 

Though we are similar to NOAA for most of the 20th century, we note that we have 882 

somewhat lower average temperatures during the period 1880-1930.  This gives us a slightly 883 

larger overall trend for the 20th century than any of the three groups.  Most of that difference 884 

comes from the more uncertain early period.  In previous work, it has been argued that 885 

instrumentation changes may have led to an artificial warm bias in the early 1900s (Folland et al. 886 
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2001, Parker 1994).  To the degree that our reconstruction from that era is systematically lower 887 

than prior work (Figure 8) it could be that our methods are more resistant to biases due to those 888 

instrumental changes. 889 

As is shown in Figure 5, we extend our record all the way back to 1800, including 50 890 

more years than HadCRU and 80 more years than NOAA and GISS.  We feel this extension is 891 

justifiable though obviously, any such reconstruction will have large uncertainties.  Our analysis 892 

technique suggests that temperatures during the 19th century were approximately constant (trend 893 

0.20 ± 0.25 C/century) and on average 1.48 ± 0.13 C cooler than the interval 2000-2009.  Circa 894 

1820 there is a negative temperature excursion that happens to roughly coincide with both the 895 

1815 eruption of Mount Tambora and the Dalton Minimum in solar activity.  The Mount 896 

Tambora eruption was the largest eruption in the historical era and has been blamed for creating 897 

the “year without a summer” (Oppenheimer 2003; Stothers 1984).  It was preceded by an 898 

additional large eruption in 1809 (Wagner and Zorita 2005).  The Dalton Minimum in solar 899 

activity from circa 1790 to 1830 includes the lowest 25 year period of solar activity during the 900 

last 280 years, but this is considered to have produced only minor cooling during this period, 901 

while volcanism was the dominant source of cooling (Wagner and Zorita 2005).  Though the 902 

uncertainties are very large, the fact that this temperature excursion is well-established in the 903 

historical record and motivated by known climate forcings gives us confidence than the ~1820 904 

excursion is a reflection of a true climate event.  However, we will note that our early data is 905 

heavily biased towards North America and Europe, so we cannot draw conclusions about the 906 

regional versus global extent of the event. 907 

As discussed above, the uncertainty in our result is conceptually divided into two parts, 908 

the “statistical uncertainty” which measures how well the temperature field was constrained by 909 
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data in regions and times where data is available, 𝐹 𝑥, 𝑡! ≈ 1, and the “spatial uncertainty” 910 

which measures how much uncertainty has been introduced into the temperature average due to 911 

the fact that some regions are not effectively sampled, 𝐹 𝑥, 𝑡! ≈ 0.  These uncertainties for the 912 

GHCN analysis are presented in Figure 9.   913 

 914 

Figure 9.  The 95% uncertainty on the Berkeley Average and the component spatial and 915 
jackknife statistical uncertainties for 12-month moving land averages 916 

 917 

 918 

The two types of uncertainty tend to covary.  This reflects the reality that station 919 

networks historically developed in a way that increasing station density (which helps statistical 920 
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uncertainties) tended to happen at similar times to increasing spatial coverage (which helps 921 

spatial uncertainties).  Overall, we estimate that the total uncertainty in the 12-month land-922 

surface average from these factors has declined from about 0.7 C in 1800 to about 0.06 C in the 923 

present day.   924 

The step change in spatial uncertainty in the early 1950s is driven by the introduction of 925 

the first weather stations to Antarctica during this time.  Though the introduction of weather 926 

stations to Antarctica eliminated the largest source of spatial uncertainty, it coincidentally 927 

increased the statistical uncertainty during the post-1950 period.  The Antarctic continent 928 

represents slightly less than 10% of the Earth’s land area and yet at times has been monitored by 929 

only about dozen weather stations.  To the extent that these records disagree with each other they 930 

serve as a large source of statistical noise.  An example of this occurred in 1979 (see Figure 9) 931 

when an uncertainty of a couple degrees regarding the mean temperature of Antarctica led to an 932 

uncertainty of ~0.2 C for the whole land-surface. 933 

Since the 1950s, the GHCN has maintained a diverse and extensive spatial coverage, and 934 

as a result the inferred spatial uncertainty is low.  However, we do note that GHCN station 935 

counts have decreased precipitously from a high of 5883 in 1969 to about 2500 at the present 936 

day.  This decrease has primarily affected the density of overlapping stations while maintaining 937 

broad spatial coverage.  As a result, the statistical uncertainty has increased somewhat.  We note 938 

again that the decrease in station counts is essentially an artifact of the way the GHCN monthly 939 

data set has been constructed.  In fact, the true density of weather monitoring stations has 940 

remained nearly constant since the 1960s, and that should allow the “excess” statistical 941 

uncertainties shown here to be eliminated once a larger number of stations are considered in a 942 

future paper. 943 
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A comparison of our uncertainties to those reported by HadCRU and NOAA (Figure 9) is 944 

warranted (comparable figures for GISS are not available).  Over much of the record, we find 945 

that our uncertainty calculation yields a value 50-75% lower than these other groups.  As the 946 

sampling curves demonstrate (Figure 6), the reproducibility of our temperature time series on 947 

independent data is extremely high which allows us to feel justified in concluding that the 948 

statistical uncertainty is very low.  This should be sufficient to estimate the uncertainty 949 

associated with any unbiased sources of random noise affecting the data.   Similarly, the 950 

concordance of the analytical and empirical spatial uncertainties gives us confidence in those 951 

estimates as well.   952 

In comparing the results we must note that curves by prior groups in Figure 9 include an 953 

extra factor they refer to as “bias error” by which they add extra uncertainty associated with 954 

urban heat islands and systematic changes in instrumentation (Brohan et al. 2006; Smith and 955 

Reynolds 2005).  As we do not include comparable factors, this could explain some of the 956 

difference.  However, the “bias” corrections being used cannot explain the bulk of the difference.  957 

HadCRU reports that the inclusion of “bias error” in their land average provides a negligible 958 

portion of the total error during the period 1950-2010.  This increases to about 50% of the total 959 

error circa 1900, and then declines again to about 25% of the total error around 1850 (Brohan et 960 

al. 2006).  These amounts, though substantial, are still substantially less than the difference 961 

between our uncertainty estimates and the prior estimates.  We therefore conclude that our 962 

techniques can estimate the global land-based temperature with considerably less spatial and 963 

statistical uncertainty than prior efforts. 964 

The assessment of bias / structural uncertainties may ultimately increase our total 965 

uncertainty, though such effects will not be quantified here.  As mentioned previously, in one of 966 
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our other submitted papers (Wickham et al.) we conclude that the residual effect of urbanization 967 

on our temperature reconstruction is probably close to zero nearly everywhere.  In addition, the 968 

scalpel technique, baseline adjustments, and reliability measures should be effective at reducing 969 

the impact of a variety of biases.  As such, we believe that any residual bias in our analysis will 970 

also be less than previous estimates.  However, further analysis of our approach is needed before 971 

we can decide how effective our techniques are at eliminating the full range of biases. 972 

We should also comment on the relatively large uncertainties in Figure 9 compared to 973 

those in Figure 1.  These imply that the other groups believe past ocean temperatures have been 974 

much more accurately constrained than land-based temperatures.  This conclusion is stated more 975 

explicitly at Smith and Reynolds 2005, Brohan et al. 2006.   976 

In considering the very earliest portions of our reconstruction, we should note that our 977 

uncertainty analysis may be appreciably understating the actual uncertainty.  This can occur for 978 

two principle reasons.  Firstly, the uncertainty attributed to spatial undersampling is based 979 

primarily on the variability and spatial structure of climate observed during the latter half of the 980 

twenty century.  For example, our approach assumes that the difference between temperatures in 981 

the Southern Hemisphere and temperatures in Europe remain similar in magnitude and range of 982 

variation in the past as they are today.  The plausibility of this assumption is encouraged by the 983 

relative uniformity of climate change during the 20th century, as shown in Figure 7.  However, 984 

this assumption could turn out to be overly optimistic and result in an under (or over) estimation 985 

of the natural climate variation in other parts of the world.  Secondly, as the number of stations 986 

gets low the potential for additional systematic biases increases.  The statistical error 987 

measurement technique essentially tests the internal consistency of the data.  The more the data 988 

disagrees amongst itself, the larger the estimated statistical error.  This is adequate if older 989 
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measurement technology is simply more prone to large random errors.  However, this technique 990 

cannot generally capture biases that occur if a large fraction of the records erroneously move in 991 

the same direction at the same time.  As the number of available records becomes small, the odds 992 

of this occurring will increase.  This is made more likely every time there is a systematic shift in 993 

the measurement technology being employed. 994 

13. Climatology  995 

Earlier in this paper, we defined the local temperature at position and time 𝑥! , 𝑡! to be 996 

given by 997 

𝑇 𝑥! , 𝑡! = 𝜃 𝑡! + 𝐶 𝑥! +𝑊 𝑥! , 𝑡!  

where  𝜃 𝑡!   is the global average temperature plotted in Figure 5, 𝑊 𝑥! , 𝑡!  is the “weather 998 

field” that we estimated using equation 12.  The remaining term 𝐶 𝑥!  is the approximately time-999 

invariant long-term mean temperature of a given location, often referred to as the climatology.  1000 

In our construction we treat this via equation [3] a function of latitude, altitude, and a smoothed 1001 

local average calculated using equation [24]. As mentioned earlier, the latitude and altitude 1002 

components account for about 95% of the structure.  A map of the climatology 𝐶 𝑥!  is shown in 1003 

Figure 10.  We found the global land average from 1900 to 2000 to be about 8.90 ± 0.48 C, 1004 

which is broadly consistent with the estimate of 8.5 C provided by Peterson et al. (2011).  The 1005 

Berkeley Average analysis process is somewhat unique in that it produces a global climatology 1006 

and estimate of the global mean temperature as part of its natural operations, rather than 1007 

discarding this information as the three other groups generally do. 1008 

 1009 
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Figure 10.  A map of the derived Climatology term 1010 

 1011 

14. Discussion 1012 

In this paper we described a new approach to global temperature reconstruction. We used 1013 

spatially and temporally diverse data exhibiting varying levels of quality and constructed a 1014 

global index series that yields an estimate of the mean surface temperature of the Earth.  We 1015 

employ an iteratively reweighted method that simultaneously determines the history of global 1016 

mean land-surface temperatures and the baseline condition for each station, as well as making 1017 

adjustments based on internal estimates of the reliability of each record.  The approach uses 1018 

variants of a large number of well-established statistical techniques, including a generalized 1019 

fitting procedure, Kriging, and the jackknife method of error analysis.  Rather than simply 1020 

excluding all short records, as was done by prior Earth temperature analysis groups, we designed 1021 

a system that allows short records to be used with appropriate – but non-zero – weighting 1022 

whenever it is practical to do so. This method also allows us to exploit discontinuous and 1023 
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inhomogeneous station records without prior “adjustment”, by breaking them into shorter 1024 

segments at the points of discontinuity.  1025 

It is an important feature of this method that the entire discussion of spatial interpolation 1026 

has been conducted with no reference to gridded data sets at all.  The fact that our approach can, 1027 

in principle, avoid gridding allows us to avoid a variety of noise and bias that can be introduced 1028 

by gridding.  That said, the integrals required by equation [2] will in general need to be 1029 

computed numerically, and per equation [12] require the solution of a large number of matrix 1030 

inverse problems. In the current paper, the numerical integrals were computed based on a 15,984 1031 

element equal-area array.  Note that using an array for a numerical integration is qualitatively 1032 

different from the gridding used by other groups.  There are no sudden discontinuities, for 1033 

example, depending on whether a station is on one side of a grid point or another, and no trade-1034 

offs to be made between grid resolution and statistical precision.  We estimate that the blurring 1035 

effects of the gridding methods used by HadCRU and GISS each introduce an unaccounted for 1036 

uncertainty of approximately ~0.02 C in the computation of annual mean temperature.  Such a 1037 

gridding error is smaller than the total ~0.05 C uncertainties these groups report during the 1038 

modern era, but not so small as to be negligible.  The fact that the resolution of our calculation 1039 

can be expanded without excess smoothing or trade offs for bias correction allows us to avoid 1040 

this problem and reduce overall uncertainties.  In addition, our approach could be extended in a 1041 

natural way to accommodate variations in station density; for example, high data density regions 1042 

(such as the United States) could be mapped at higher resolution without introducing artifacts 1043 

into the overall solution. 1044 

We tested the method by applying it to the GHCN data based from 7280 stations used by 1045 

the NOAA group.  However, we used the GHCN raw data base without the “homogenization” 1046 
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procedures that were applied by NOAA which included adjustments for documented station 1047 

moves, instrument changes, time of measurement bias, and urban heat island effects, for station 1048 

moves.  Rather, we simply cut the record at time series gaps and places that suggested shifts in 1049 

the mean level.  Nevertheless, the results that we obtained were very close to those obtained by 1050 

NOAA using the same data and their full set of homogenization procedures.  Our results did 1051 

differ, particularly in recent years, from the analyses reported by the other two groups (NASA 1052 

GISS and HadCRU).  In the older periods (1860 to 1940), our statistical methods allow us to 1053 

significantly reduce both the statistical and spatial uncertainties in the result, and they allow us to 1054 

suggest meaningful results back to 1800.  We note that we have somewhat lower average 1055 

temperatures during the period 1880-1930 than found by the prior groups, and significantly 1056 

lower temperatures in the period 1850 to 1880 than had been deduced by the HadCRU group.  1057 

We also see evidence suggesting that temperature variability on the decadal time scale is lower 1058 

now than it was the in the early 1800s.  One large negative swing, around 1820, is coincident 1059 

with both the eruption of Mt. Tambora and the Dalton Minimum in solar activity. 1060 

In another paper, we will report on the results of analyzing a much larger data set based 1061 

on a merging of most of the world’s openly available digitized data, consisting of data taken at 1062 

over 39,000 stations, more than 5 times larger than the data set used by NOAA. 1063 

  1064 
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Figure Captions  

Figure 1.  (Upper panel) Comparison of the global annual averages of the three major research 

groups, plotted relative to the 1951-1980 average.  (Lower panel) The annual average uncertainty 

at 95% confidence reported by each of the three groups.  NASA reports an uncertainty at only 

three discrete times, shown as solid dots, while the other two groups provide continuous 

estimates of the uncertainty. 

 

Figure 2.  Mean correlation versus distance curve constructed from 500,000 pair-wise 

comparisons of station temperature records.  Each station pair was selected at random, and the 

measured correlation was calculated after removing seasonality and with the requirement that 

they have at least 10 years of overlapping data.  Red, green, and yellow curves show a moving 

range corresponding to the inner 80, 50, and 20% of data respectively.  The black curve 

corresponds to the modeled correlation vs. distance reported in the text.  This correlation versus 

distance model is used as the foundation of the Kriging process used in the Berkeley Average. 

 

Figure 3.  Correlation versus distance fits, similar to Figure 2, but using only stations selected 

from portions of the Earth.  The Earth is divided into eight longitudinal slices (Left) or seven 

latitudinal slices (Right), with the slice centered at the latitude or longitude appearing in the 

legend.  In each panel, the global average curve (Figure 2) is plotted in black.  All eight 

longitudinal slices are found to be similar to the global average.  For the latitudinal slices, we 

find that the correlation is systematically reduced at low latitudes.  This feature is discussed in 

the text. 
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Figure 4.  (Upper) Station locations for the 7280 temperature stations in the Global Historical 

Climatology Network Monthly dataset.  (Lower Left) Number of active stations over time.  

(Lower Right) Percentage of the Earth’s land area sampled by the available stations versus time, 

calculated as explained in the text.  The transition during the mid 1950s corresponds to the 

appearance of the first temperature records on Antarctica. 

 

Figure 5.  Result of the Berkeley Average Methodology applied to the GHCN monthly data.  

Top plot shows a 12-month land-only moving average and associated 95% uncertainty from 

statistical and spatial factors.  The lower plot shows a corresponding 10-year land-only moving 

average and 95% uncertainty.  This plot corresponds to the parameter  in Equation 5.  Our 

plotting convention is to place each value at the middle of the time interval it represents.  For 

example, the 1991-2000 average in the decadal plot is shown at 1995.5. 

 

Figure 6.  Five independent temperature reconstructions each derived from a separate 20% of 

the GHCN stations.  The upper figure shows the calculation of the temperature record based on 

five independent subsamples. The lower plot shows their difference from the 100% result, and 

the expected 95% uncertainty envelope.  The uncertainty envelope used here is scaled by 5 

times the statistical uncertainty reported for the complete Berkeley Average analysis.  This 

reflects the larger variance expected for the 20% samples. 

 

Figure 7. Maps showing the decadal average changes in the land temperature field.  In the upper 

plot, the comparison is drawn between the average temperature in 1900 to 1910 and the average 

temperature in 2000 to 2010.  In the lower plot, the same comparison is made but using the 
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interval 1960 to 1970 as the starting point.  We observe warming over all continents with the 

greatest warming at high latitudes and the least warming in southern South America.  

 

Figure 8.  Comparison of the Berkeley Average to existing land-only averages reported by the 

three major temperature groups.  The upper panel shows 12-month moving averages for the four 

reconstructions, and a gray band corresponding to the 95% uncertainty range on the Berkeley 

average.  The lower panel shows each of the prior averages minus the Berkeley average, as well 

as the Berkeley average uncertainty.  As noted in the text, there is a much larger disagreement 

among the existing groups when considering land-only data than when comparing the global 

averages (Figure 1).  HadCRU and GISS have systematically lower trends than Berkeley and 

NOAA.  In part, this is likely to reflect differences in how “land-only” has been defined by the 

three groups.  Berkeley is very similar to the NOAA result during the twentieth century and 

slightly lower than all three groups during the 19th century. 

 

Figure 9.  The 95% uncertainty on the Berkeley Average (red line) and the component spatial 

(blue) and jackknife statistical (green) uncertainties for 12-month moving land averages.  For 

comparison the sampling statistical uncertainty is also shown (black), though it does not 

contribute to the total.  From 1900 to 1950, the spatial uncertainty is dominated by the complete 

lack of any stations on the Antarctic continent.  From 1960 to present, the statistical uncertainty 

is largely dominated by fluctuations in the small number of Antarctic temperature stations.  For 

comparison, the land-only 95% uncertainties for HadCRU and NOAA are presented.  As 

discussed in the text, in addition to spatial and statistical consideratios, the HadCRU and NOAA 

curves include additional estimates of “bias error” associated with urbanization and station 
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instrumentation changes that we do not currently consider.  The added “bias error” contributions 

are small to negligible during the post 1950 era, but this added uncertainty is a large component 

of the previously reported uncertainties circa 1900. 

 

Figure 10.  A map of the derived Climatology term,   95% of the variation is accounted for 

by altitude and latitude.  Departure from this is evident in Europe and in parts of Antarctica. 
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APPENDIX 

Symbols used in the Berkeley Average method. 

 

𝑡 the time 

𝑡! the j-th time step (i.e. month) 

𝑥	
   an arbitrary position on the surface of the earth 

𝑥! 	
   the position of the i-th station on the surface of the earth 

𝑇(𝑥, 𝑡) the true temperature at location 𝑥 and time 𝑡 

𝑇(𝑥, 𝑡) the estimated temperature at location 𝑥 and time 𝑡 

𝑑! 𝑡!  the measured temperature time series (e.g. “data”) at the i-th station and j-th 

time step 

𝜃 𝑡  the global mean temperature time series 

𝐶 𝑥  the long-term average temperature as a function of location (“climatology”) 

𝑊 𝑥, 𝑡  spatial and temporal variations in 𝑇 𝑥, 𝑡  not ascribed to 𝜃 𝑡  or 𝐶 𝑥  (e.g. 

the “weather”) 

𝜆 𝑥  the temperature change as a function of latitude 

ℎ 𝑥  the temperature change as a function of surface elevation 

𝐺(𝑥) the variations in 𝐶 𝑥  not ascribed to ℎ 𝑥  or 𝜆 𝑥 , i.e. the geographical 

anomalies in the mean temperature field. 

𝑏! the baseline temperature of the i-th station 

𝑆!(𝑥, 𝑡!)	
   the initial spatial weight of the i-th station at location 𝑥 and time 𝑡! 

𝑆!∗(𝑥, 𝑡!)	
   the adjusted spatial weight of the i-th station at location 𝑥 and time 𝑡! 

𝜔! 	
   the reliability weight associated with the i-th station 

𝑒	
   the mean local misfit between a temperature record and the interpolated 
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field 

𝐹(𝑥, 𝑡!)	
   a measure of the completeness of the sampling at location 𝑥 and time 𝑡! 

𝐹(𝑡!)	
   a measure of the completeness of the sampling across all land at time 𝑡! 

𝐵!(𝑥)	
   the baseline spatial weighting factor for the i-th station at location 𝑥 

𝑅(𝑥! , 𝑥!)	
   the expected spatial correlation in temperature between locations 𝑥! and 𝑥! 

𝐶(𝑥! , 𝑥!)	
   the covariance in temperature between locations 𝑥! and 𝑥! 

𝜎!! the variance of the temperature record at the i-th station 

𝑂!,! the outlier weight associated with data point 𝑇!(𝑡!)  

Δ! 𝑡!  the difference between data point 𝑑! 𝑡!   and the estimated value of the 

temperature field at the same location and time. 

 

Table 1: Summary of the primary symbols used to describe the Berkeley Earth averaging 

method. 

 


